Support vector regression with random output variable and probabilistic constraints
نویسندگان
چکیده مقاله:
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadratic optimization problem. The proposedmethod is illustrated by several simulated data and real data sets for both models (linear and nonlinear) with probabilistic constraints.
منابع مشابه
support vector regression with random output variable and probabilistic constraints
support vector regression (svr) solves regression problems based on the concept of support vector machine (svm). in this paper, a new model of svr with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملKernel Support Vector Regression with imprecise output ∗
We consider a regression problem where uncertainty affects to the dependent variable of the elements of the database. A model based on the standard -Support Vector Regression approach is given, where two hyperplanes need to be constructed to predict the interval-valued dependent variable. By using the Hausdorff distance to measure the error between predicted and real intervals, a convex quadrat...
متن کاملSupport Vector Regression with Fuzzy Target Output
In this paper, we incorporate the concept of fuzzy set theory into the support vector regression (SVR). In our proposed method, target outputs of training samples are considered to be fuzzy numbers and then, membership function of actual output (objective hyperplane in high dimensional feature space) is obtained. Two main properties of our proposed method are: (1) membership function of actual ...
متن کاملSimple Probabilistic Predictions for Support Vector Regression
Support vector regression (SVR) has been popular in the past decade, but it provides only an estimated target value instead of predictive probability intervals. Many work have addressed this issue but sometimes the SVR formula must be modified. This paper presents a rather simple and direct approach to construct such intervals. We assume that the conditional distribution of the target value dep...
متن کاملSupport Vector Regression with Interval-Input Interval-Output
Support vector machines (classification and regression) are powerful machine learning techniques for crisp data. In this paper, the problem is considered for interval data. Two methods to deal with the problem using support vector regression are proposed and two new methods for evaluating performance for estimating prediction interval are presented as well.
متن کاملMulti-output least-squares support vector regression machines
a Information Technology Supporting Center, Institute of Scientific and Technical Information of China No. 15 Fuxing Rd., Haidian District, Beijing 100038, China b School of Economics and Management, Beijing Forestry University No. 35 Qinghua East Rd., Haidian District, Beijing 100038, China College of Information and Electrical Engineering, China Agricultural University No. 17 Qinghua East Rd....
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 14 شماره 1
صفحات 43- 60
تاریخ انتشار 2017-02-28
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023